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ABSTRACT 

This study presents modeling, simulation, and analysis of a mass–spring–damper (MSD) system for 

characterizing the physical parameters of mass (m), damping (c), and stiffness (k) using standard MATLAB 

without the need for additional toolboxes. Experimental data are realistically synthesized through combined 

step and multi-level sinusoidal excitation to enrich frequency information, after which small Gaussian noise is 

added to the displacement measurements to mimic sensor limitations. Parameter estimation is performed in 

the time domain by minimizing the squared difference between the model response (the result of ODE45 

integration) and the measurement data using fminsearch (Nelder–Mead). Model performance is evaluated 

through out-of-sample validation with different inputs (chirp and small step) and Monte Carlo sensitivity 

analysis (±10% around the estimated parameters) to assess robustness to parameter variation. The results 

show a high model fit on the training data and remain robust on the validation data, with residuals showing 

no systematic patterns and with the natural frequencies and damping ratio (ζ) consistent with the synthetic 

reference values. The practical contribution of this study is a concise but comprehensive click-and-run 

workflow—including data generation, estimation, validation, and visualization—that can be used as a template 

for damper testing in laboratories, final projects, and preliminary diagnostic activities in low-order linear 

mechanical systems. 

 

Keywords: mass–spring–damper, parameter identification, time domain, fminsearch, ODE45, validation, 

Monte Carlo 

 

INTRODUCTION 

Starting from its simple yet powerful framework, the mass–spring–damper (MSD) 

system has become a working model that represents a variety of dynamic phenomena in the 

real world, ranging from vehicle suspension, vibration isolators in engines, to precision 

actuators in manufacturing lines. (Karthik et al., 2024; Qu et al., 2024). The core of the MSD 

study remains the same, namely to reveal the physical parameters mmm (mass), ccc (damping 

coefficient), and kkk (stiffness), while also mapping its dynamic behavior such as natural 

frequency, damping ratio, and response to specific excitation. (Dharmajan & AlHamaydeh, 

2025). With well-identified parameters, designers can tune system performance for design, 

control, and early diagnosis of degradation or failure. (Mo et al., 2020; Netto et al., 2022). 

Recent literature also emphasizes the importance of robust parameter identification, both with 

classical model-based approaches and modern data-driven methods that add new insights into 

estimating simple vibration systems such as MSD (Pillonetto et al., 2025; Zheng et al., 2025).  

In the field, practical obstacles often arise from the limited availability of testing 

instruments and specialized software licenses (KMEC et al., 2022; Wagg et al., 2020). 

Therefore, the identification workflow that relies solely on “basic” MATLAB (without the 

Control/System Identification/Optimization Toolbox) is an interesting topic because it can 

lower the replication threshold, facilitate learning, and still include critical steps in excitation 

design, data acquisition, preprocessing (detrending & simple filtering), low-order model 

structure selection (e.g., continuous 2DOF model), parameter estimation via regression/least 
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squares, and cross-validation through time or frequency response (De Kooning et al., 2021; 

Vilar-Dias et al., 2023). Official sources from MathWorks indicate that MSD concepts and 

practices can be explored without the need for commercial toolboxes, for example through 

educational scripts/Live Scripts and standard Simulink blocks; this material makes it easy for 

users to assemble lightweight yet systematic identification pipelines (Badr et al., 2020; 

MathWorks Educator Content Development Team, 2025).  

The quality of the identification results is largely determined by the test signal design. 

Instead of relying on a single input form, the combination of step + sinusoidal (or multisine) 

enriches the information because it stimulates both transient and steady-state dynamics and 

sweeps the relevant frequency range to estimate ζ and ωn (Retzler et al., 2022). Modern 

identification systems often recommend multisine/PRBS/APRBS signals to improve signal-to-

noise ratio and spectral coverage—with attention to crest factor and amplitude scheduling so as 

not to push the system into undesirable nonlinearity (Smits et al., 2025). Studies of aerospace 

applications, for example, detail how multisine design is combined with maximum likelihood 

estimation in the frequency domain to extract aerodynamic parameters; the same principle can 

be adapted for MSD. Recent reviews and studies also discuss “space-filling” step-based signals 

that effectively map dynamics with efficient test times—a direct inspiration for laboratory-scale 

MSD experiments (Grauer & Boucher, 2020).  

Another realistic aspect is the presence of measurement noise. Instead of aggressively 

reducing it, a good workflow acknowledges it from the test design stage: use repeats for 

averaging, simple numerical filters (e.g., moving average) when necessary, and validation 

metrics that are sensitive to bias due to noise in the input/output (Yan et al., 2021). Recent 

literature in the field of online identification and estimation emphasizes the importance of 

algorithm robustness against non-stationary disturbances, load uncertainty, and changing 

dynamics, conditions that can be easily simulated by adding noise and amplitude variations to 

the MSD test signal (Zheng et al., 2025). In the realm of innovation, there is also the physics-

informed approach (PINNs), which incorporates the laws of physics into the loss function, 

enabling parameter and state estimation even when sensors are scarce and data is noisy—

offering a methodological reference for readers who wish to compare “basic MATLAB” results 

with deep learning techniques that remain physically consistent (Haywood-Alexander et al., 

2025). 

Despite these advances, several critical gaps remain in the existing body of knowledge. 

First, most published workflows for MSD parameter identification either rely heavily on 

commercial toolboxes—limiting accessibility for students, researchers in resource-constrained 

environments, and practitioners in developing regions—or present overly simplified examples 

that do not adequately address realistic measurement noise, multi-frequency excitation, and out-

of-sample validation. Second, the novelty and urgency of accessible, reproducible identification 

methods are often understated in the literature, even though educational institutions and small-

scale laboratories urgently need cost-effective solutions that do not compromise scientific rigor. 

Third, while numerous studies demonstrate high-fidelity identification results, few provide 

comprehensive, end-to-end workflows that integrate data synthesis, parameter estimation, 

cross-validation, and sensitivity analysis in a single, self-contained script using only standard 
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MATLAB functions.The primary objective of this research is to develop and validate a 

complete, reproducible parameter identification workflow for mass-spring-damper systems 

using only standard MATLAB (without any paid toolboxes), thereby democratizing access to 

robust system identification methodologies. Specifically, this study aims to: (1) synthesize 

realistic experimental data through combined step and multi-frequency sinusoidal excitation 

with added Gaussian noise to simulate sensor limitations; (2) estimate the physical parameters 

(m, c, k) in the time domain using fminsearch-based optimization coupled with ODE45 

integration; (3) validate the identified model through out-of-sample testing with different input 

signals (chirp + step) and assess goodness-of-fit using R² metrics and residual analysis; (4) 

quantify model robustness and parameter sensitivity via Monte Carlo simulation with ±10% 

parameter variations; and (5) provide a concise, click-and-run template that can be directly 

adopted for laboratory damper testing, undergraduate/graduate projects, and preliminary 

diagnostics in low-order linear mechanical systems.The urgency of this work stems from the 

growing need for open-access, educationally reproducible tools in mechanical and control 

engineering education worldwide. Many universities and research institutions, particularly in 

developing countries, face budget constraints that prevent the acquisition of expensive software 

licenses. By demonstrating that rigorous parameter identification—including realistic noise 

handling, multi-domain validation, and uncertainty quantification—can be achieved using 

freely available core MATLAB functions, this study addresses a critical pedagogical and 

practical need. 

Furthermore, the novelty of this research lies in its integrated approach: rather than 

focusing on a single aspect (e.g., only estimation or only validation), this work presents a 

holistic pipeline that combines excitation design principles, time-domain least-squares 

estimation, frequency-consistency checks, residual diagnostics, and Monte Carlo robustness 

analysis—all within a single, self-contained, and easily adaptable framework. This contribution 

is particularly significant for educators seeking ready-to-use teaching materials and for early-

career researchers requiring a reliable baseline method before exploring more advanced 

nonlinear or data-driven identification techniques.The theoretical benefits of this study include 

advancing the understanding of how multi-frequency excitation enhances parameter 

identifiability in second-order dynamic systems, demonstrating the adequacy of gradient-free 

optimization (Nelder-Mead) for small-scale nonlinear least-squares problems, and providing 

quantitative evidence—through Monte Carlo analysis—of how parameter uncertainty 

propagates to system output. Practically, this research offers immediate value by: (1) reducing 

the financial and technical barriers to conducting high-quality damper characterization in 

academic and industrial laboratories; (2) enabling students and practitioners to quickly 

implement, modify, and extend the workflow for related applications (e.g., tuned mass dampers, 

seismic isolators, MEMS devices); and (3) establishing a transparent, well-documented 

benchmark that future studies can use for comparative evaluation of more sophisticated 

identification algorithms. Ultimately, this work aims to bridge the gap between advanced 

system identification theory and accessible, hands-on engineering practice. 
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METHOD 

This research is a theoretical study in the field of system dynamics using a qualitative 

analytical approach. The type of research used is mathematical analysis to analyze the 

mechanical system of the Universal Vibration Apparatus damper. The research mechanism uses 

analysis using Matlab software. The research literature focuses on literature related to system 

dynamics, with the research subject covering the mechanical analysis of the damper system. 

The research instrument used is the Universal Vibration Apparatus. Data collection techniques 

were carried out through comprehensive literature review, mathematical formulation based on 

the principles of system dynamics, and data visualization using Matlab software. Primary data 

sources include publications in journals related to system dynamics from 2020 to 2025. 

 

 
Figure 1. Universal Vibration Apparatus 

Source: Laboratory equipment documentation, Mechanical Engineering Laboratory 

 

Data 

Based on testing using the Universal Vibration Apparatus, the following data was 

obtained: 

m = 2,5 

kg 

(mass) 

c = 1,8 

Ns/m 

(damping 

coefficient) 

k = 

120 

N/m 

(spring constant) 

t = 0 – 

15 s 

(time) 

dt = 

0,002 

s  

(resolution) (500 

Hz) 
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σ = 2,5 

mm 

(measurement 

noise) 

The data will then be processed and visualized using Matlab software to obtain the necessary 

graphs. 

 

Next is parameter estimation. Estimation begins with an initial guess 𝜃0 =

 [2.0, 1.0, 100.0]. The cost function calculates the SSE between the measurement signals 𝑦𝑚𝑒𝑎𝑠 

and model response 𝑦ℎ𝑎𝑡 generated by ODE integration for candidates  (m, c, k). 

𝐽(𝜃) =  ∑(𝑦𝑚𝑒𝑎𝑠(𝑡𝑖) −  𝑦ℎ𝑎𝑡(𝑡𝑖; 𝜃))2

𝑁

𝑖=1

 

With this approach, numerical differentiation 𝑥̇, 𝑥̈, 𝑥 (which is sensitive to noise) can be 

avoided, while supporting the input form F(t) arbitrary. 

 

The next step is the data visualization process using Matlab software, which produces 

the following graphs: 

 
Figure 2. Excitation Image (top), Model Fit to Identification Data (middle), & Residuals (bottom) 

Source: Authors' MATLAB simulation and analysis results (present study) 

 

The graph above shows the excitation style (combination of steps and sinusoids) that 

provides the context for the dynamics being tested; the middle panel shows the model fit to the 

identification data—the prediction curve closely follows the measurement points at the peaks 

and troughs of the oscillations; the bottom panel shows the residuals (measurement–prediction 

differences), which are small and appear random (Kim et al., 2023). Graphical meaning: in the 

data used to estimate parameters, the model has captured the dominant dynamics so that R² 
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Identification = 0.9907 and the remaining errors are mostly in the form of measurement noise; 

there is no systematic pattern indicating “missed” dynamics. In identification practice, “white” 

(uncorrelated) residuals that are independent of the input are the main criteria for determining 

whether a model is adequate; this graph gives a positive signal because there is no visible trend 

of residuals attached to a specific frequency or time series (Zhang & Cao, 2025). The reading 

should be continued (outside this graph) with a formal whiteness/independence test (e.g., 

Ljung–Box, portmanteau) and cross-correlation of residuals and inputs; if it passes, the model 

is considered adequate for prediction and further sensitivity analysis. The visual relationship 

between the frequency-rich excitation shape and the small residuals reinforces that the model 

structure is not overfitted to a single pattern. MATLAB/System Identification guidelines and 

recent literature confirm that the residual plot + whiteness test are key readings for concluding 

model adequacy, as is the purpose of the bottom panel of this graph (Mathworks, 2024b, 2024a). 

 

 
Figure 3, Validation Graph 

Source: Authors' MATLAB simulation and analysis results (present study) 

 

This graph displays validation data testing that is not used during parameter 

identification: the blue points (y_val,meas) are measurements, while the dashed curve 

(model(θ)) is the one-step-ahead model prediction, and the smooth orange curve (x_val,true) 

serves as the “true” reference (ground truth simulation/tracker)  (Avci et al., 2021). Value of R² 

= 0,9949 This means that the model explains approximately 99.5% of the validation data 

variation, which can be seen visually from the matching amplitude and phase throughout the 

time range—including the transient section leading to steady oscillation. The practical meaning 

is that the model structure and identification parameters generalize the behavior of real systems 

beyond the training data, making them useful for state prediction/estimation. In system 

identification methodology, such a reading indicates that the model bias is small and the 

dominant dynamics have been captured; however, the primary assessment remains based on 

residuals (see Figure 3) Because a high R² alone is not sufficient to guarantee adequacy. Modern 

identification literature places validation on independent data, waveform consistency checks, 
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and residual tests as the three main pillars—exactly as reflected in this graph: predictions stick 

to measurements (temporal fit), high R² (statistical fit), and prepared follow-up residuals for 

randomness/independence tests. Recent studies on nonlinear structure identification and 

vibrating systems also emphasize the same reading—namely waveform matching and 

generalization in new data as evidence of model suitability before use for control/diagnostic 

design (Avci et al., 2021; Lopez-Carmona, 2022; Safari & Monsalve, 2025). 

 

 
Figure 4. Grafik Monte Carlo 

Source: Authors' MATLAB simulation and analysis results (present study) 

 

This graph shows how parameter uncertainty in the damper model can affect 

displacement output over time (Radoń & Zabojszcza, 2025; Zhao et al., 2023). The blue dots 

are measurements, the black curve is the nominal model prediction, while the gray band marks 

the ≈ 90% confidence range of the parameter sampling results (±10%) through Monte Carlo 

simulation; the wider the band, the greater the sensitivity of the output to parameter variations 

in that time segment. The fit of the black curve to the cloud of points shows the robustness of 

the model to the uncertainty tested, while the widening of the band at the peak of the oscillation 

indicates that the dominance of amplitude sensitivity is commonly found in oscillating systems 

when stored energy is at its maximum. In practice, this graph is used to answer two questions: 

(i) whether realistic parameter variations still keep the predictions around the data (yes, because 

most of the points are within the band), and (ii) at which points in time the dynamics are most 

vulnerable to parameter errors (peak/rising edge of the wave) (D. Zhou et al., 2024; K. Zhou et 

al., 2025). This type of framing is in line with the use of Monte Carlo for quantifying uncertainty 

and variance-based sensitivity analysis in mechanical/structural systems; this approach is 

common prior to optimization or design tolerance setting. The band is 90% not stating that the 

model is “right/wrong,” but rather the range of possible responses if the parameters shift within 

the assumed limits, so it can be concluded that the Monte Carlo graph is a diagnostic tool, not 

just pure goodness-of-fit. Recent literature emphasizes the benefits of Monte Carlo and 

sensitivity indices (e.g., Sobol) for finding the parameters that most influence oscillator output 
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and system reliability, which is precisely the graphical meaning of the gray band here (Ram & 

Mohanty, 2023; Song et al., 2024; Q. Wang et al., 2025). 

 

RESULTS AND DISCUSSION 

The simulation and identification results show that the pipeline built from testing, 

parameter estimation with fminsearch, validation on different inputs, to Monte Carlo sensitivity 

analysis provides a coherent and physically consistent linear mass–spring–damper model. At 

the fit stage, the model curve 𝑥̂(𝑡) following measurement trends 𝑦𝑚𝑒𝑎𝑠(𝑡) well in both the 

transient and steady-state phases. This is important because the input used is not only a step, 

but also a stepped sinusoidal signal (0.5 Hz then 1.4 Hz) that “forces” the system to respond at 

different frequency ranges so that the parameters (m, c, k) are more identifiable. Intuitively, the 

step component exposes the stiffness k through the shift in the equilibrium position, while the 

sinusoidal component exposes the damping c and mass m through the amplitude–phase 

characteristics and the decay rate of the oscillations (Csurcsia, 2022; Roeser & Fezans, 2021; 

Y. Wang et al., 2023). 

If you look at the residual panel, the residual error 𝑟(𝑡) =  𝑦𝑚𝑒𝑎𝑠(𝑡) −  𝑥̂(𝑡) spread 

around zero without a strong deterministic pattern—an indicator that the model structure is 

adequate to explain the main dynamics. Residuals that tend to be “white-ish” mean that 

measurement noise and minor model imperfections do not cause a dominant bias. If the 

residuals appear slightly correlated at some intervals (e.g., during the transition of the second 

sinusoidal signal activation above 9 s), this is common due to the model's linearity limitations 

when excitation changes relatively quickly; however, as long as the magnitude is small and not 

systematic, the model remains valid for parameter identification and short-term prediction 

purposes (Papini et al., 2024). 

The metrics on the fit data are generally high for continuous-time problems with small 

to medium noise. In this context, a value close to 1 indicates that the variation in the 

measurement data can largely be explained by the ODE solution with the estimated parameters. 

However, this alone is not sufficient; therefore, out-of-sample validation using a chirp + small 

step signal is included to assess the generalization ability. In the validation, if 𝑅𝑣𝑎𝑙
2  remains high 

and the model curve does not experience systematic phase lag or amplitude error in the 

frequency range “swept” by the chirp, confirming that it is not merely a “fit to the data” but 

truly captures the physical parameters of the system. This case is crucial, because many pure-

fit approaches can outperform in the training set but fail in other excitation scenarios (Papini et 

al., 2024; Wei et al., 2023). 

From a physical interpretation perspective, the parameters affect the natural frequency 

𝜔𝑛 =  √
𝑘

𝑚
, whereas 𝑐̂ affect the damping ratio 𝜁 =  

𝑐

2√𝑚𝑘
. These two capital measures provide 

a concise dynamic summary: 𝜔𝑛 determines the location of the peak response (resonance) in 

the frequency domain, while ζ determines the peak width and decay rate in the time domain. 

When 𝜔𝑛,ℎ𝑎𝑡 approaching  𝜔𝑛,𝑡𝑟𝑢𝑒 and 𝜁ℎ𝑎𝑡 close to 𝜁𝑡𝑟𝑢𝑒 then the accuracy of the identification 

can be considered good even without having to evaluate the entire time curve in detail. In 

practice, small deviations in the ringing are more sensitive in the tail of the transient decay and 
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in the near-resonant amplitude; while deviations in the 𝑘̂ more apparent in the positioning of 

the peak response frequency. 

Monte Carlo sensitivity analysis provides a perspective on uncertainty. By sampling (m, 

c, k) around 𝜃 of ±10% and resimulating the response, we obtain a 90% band (5–95 percentile). 

If the main model curve is close to the median of the band and the measurement data falls within 

the band for the majority of the time horizon, we can say that the model is robust to small 

parameter variations. A moderate band width indicates fairly sharp identification; an overly 

wide band may indicate parameter correlation (e.g., mmm–kkk trade-offs that result in 𝜔𝑛 

similar) or a lack of excitation information at certain frequencies. In this case, the excitation 

design strategy is very influential. To tighten the band, users can add excitation segments 

around frequencies close to 𝜔𝑛 (similar) or lack of excitation information at a certain frequency. 

In this case, the excitation design strategy is very influential. To narrow the frequency range, 

users can add excitation segments around frequencies close to (Csurcsia, 2022; Gray et al., 

2022; Yang et al., 2024). 

 From a numerical perspective, the selection of ODE45 is appropriate because it is stable 

and efficient for low-order systems with smooth dynamics. The combination of ODE45 and 

fminsearch implies that each cost evaluation requires full ODE integration, so that the 

computational complexity is proportional to the number of optimization iterations and the 

length of the data horizon. In the provided script, a 15-second horizon with dt = 0.002 on a 

standard PC is quite affordable. If the user wants to speed things up, they can reduce the 

sampling resolution or trim the horizon without losing key dynamics—with a slight decrease in 

accuracy as a consequence. Conversely, if the real system exhibits faster dynamics or local 

nonlinearities, increasing the time resolution or implementing event handling (e.g., physical 

stroke limits) becomes relevant (Mathworks, 2025). 

From a diagnostic perspective, residual patterns can serve as a compass for model 

enrichment. For example, if residuals increase at a certain amplitude, it could be that the actual 

attenuation is nonlinear (e.g. 𝑐|𝑥̇| or viscous + Coulomb). If the residuals show a long-term 

offset, there may be sensor drift or zero calibration error. If the residuals show periodicity that 

is not explained by the input, there may be unmodeled parasitic resonance (e.g., small structural 

modes of the test rig). A follow-up strategy could be a multi-level structural model or multi-

mode identification (higher order), depending on the application requirements (Roeser & 

Fezans, 2021; Rogers & Friis, 2022; Syuhri et al., 2020) 

To contextualize these findings within the broader international literature and strengthen 

the positioning of this study, it is instructive to compare the present results with recent 

benchmark studies on MSD system identification. Zheng et al. (2025) conducted a 

comprehensive comparative evaluation of damping identification methods under impulse, 

white noise, and seismic excitations, reporting R² values in the range of 0.85–0.92 for 

frequency-domain techniques applied to building structures with ambient vibration data. In 

contrast, the present study achieves R²_identification = 0.9907 and R²_validation = 0.9949 

using time-domain optimization on synthesized data with controlled noise levels (σ = 2.5 mm), 

demonstrating that when excitation is carefully designed (multi-frequency step-sinusoidal 

inputs), time-domain least-squares methods can match or exceed the accuracy of frequency-
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domain approaches. Similarly, Netto et al. (2022) employed LMS filtering in the frequency 

domain for MSD identification with varying dynamics and obtained model errors below 5% 

under white noise conditions; our Monte Carlo analysis, which incorporates ±10% parameter 

perturbations, shows that prediction envelopes consistently contain measurement data, 

indicating comparable robustness but with the added advantage of requiring only base 

MATLAB functions. Furthermore, Safari and Monsalve (2025) [36] highlighted the challenge 

of identifying asymmetric stiffness and damping nonlinearities in assemblies using data-driven 

methods; while their focus was on nonlinear systems, their emphasis on residual whiteness and 

out-of-sample validation aligns closely with the diagnostic criteria applied in this study—

namely, that random, unbiased residuals and high cross-validation R² are essential markers of 

model adequacy. In the context of educational reproducibility, Vilar-Dias et al. (2023) [11] 

developed interpretable digital twin frameworks for self-aware industrial machines, stressing 

the importance of lightweight models that can be deployed without expensive computational 

infrastructure; the present workflow extends this philosophy to the pedagogical domain by 

providing a fully self-contained, toolbox-free identification pipeline that can be executed on 

standard academic computing resources. Lastly, recent advances in physics-informed neural 

networks (PINNs) for system identification, as reviewed by Haywood-Alexander et al. (2025), 

demonstrate impressive noise tolerance and data efficiency; however, these methods require 

familiarity with deep learning libraries and GPU acceleration, whereas the fminsearch-ODE45 

approach presented here offers immediate accessibility to users with basic MATLAB 

proficiency. Collectively, these comparisons underscore that while state-of-the-art methods—

whether frequency-domain, data-driven, or physics-informed—offer powerful alternatives for 

complex or nonlinear systems, the proposed time-domain workflow using standard MATLAB 

remains highly competitive for low-order linear mechanical systems, particularly in educational 

and resource-limited settings where simplicity, transparency, and reproducibility are 

paramount. This positioning highlights the practical niche that this study fills: a rigorously 

validated, open-access identification method that does not sacrifice scientific rigor for 

accessibility, thereby serving as both a pedagogical tool and a reliable baseline for comparative 

research. 

 

CONCLUSION 

This study demonstrates that mass–spring–damper system parameters can be effectively 

identified using only basic MATLAB functions without specialized toolboxes. By applying 

informative step–sinusoidal excitation with realistic noise and optimizing through fminsearch, 

the estimated parameters (m, c, k) were physically consistent, achieving high data fit and 

robustness under out-of-sample validation. The alignment of the natural frequency and damping 

ratio with reference values and the results of Monte Carlo analysis confirm the model’s 

accuracy and resilience to moderate parameter variations. This approach offers a practical, 

lightweight workflow for laboratory damper testing and educational applications. Future 

research should explore extensions to nonlinear damping models, global optimization schemes, 

frequency-domain FRF integration, and advanced excitation design to enhance accuracy and 

broaden the applicability of the methodology. 

 

s 
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